

Available online at www.sciencedirect.com

Journal of Power Sources 136 (2004) 150-153

www.elsevier.com/locate/jpowsour

JOURNAL OF

Short communication

LiNiPO₄–LiCoPO₄ solid solutions as cathodes

J. Wolfenstine*, J. Allen

Army Research Laboratory, AMSRD-ARL-SE-DC, 2800 Powder Mill Road, Adelphi, MD 20783-1197, USA

Received 12 April 2004; accepted 12 May 2004

Available online 8 July 2004

Abstract

LiNiPO₄–LiCoPO₄ solid solutions were investigated as potential cathodes for use in Li-ion batteries. Cyclic voltammetry and discharge curves reveal that the discharge capacity of the LiNiPO₄–LiCoPO₄ solid solutions is associated entirely with the Co^{3+}/Co^{2+} redox couple at a potential of 4.7–4.8 V. The effect of Ni is to reduce the length of the 4.7–4.8 V plateau. © 2004 Elsevier B.V. All rights reserved.

Keywords: Cathode; Li-ion batteries; Olivine; Phosphates; Solid solution

1. Introduction

Recently, there has been interest in the use of lithium transition metal phosphates with an ordered olivine structure, $LiMPO_4$ (M = Fe, Mn, and Co), as potential cathodes for Li-ion batteries [1–9]. The main problem with the above phosphates is their poor rate capability [1-3,6,8-10]. This is attributed to low Li-ion diffusion and/or low electronic conductivity [1-10]. Previous attempts to increase the rate have primarily focused on decreasing particle size [8,9], carbon coating of the particle surface [7,11] and lattice doping with aliovalent cations [10]. There is another possible method to improve rate, which has received less attention, which entails increasing Li-ion diffusion [12]. This involves the formation of a solid solution between two lithium transition metal phosphates (i.e., LiMnPO₄–LiFePO₄) where the conductivity (Li-ion diffusion) of one end member (i.e., LiFePO₄) is higher than that of the other end member (i.e., LiMnPO₄) so that the resulting solid solution (i.e., LiMnPO₄-LiFEPO₄) will have enhanced conductivity compared to the lower conductivity end member [2,12].

The potential of the M^{3+}/M^{2+} redox couple versus Li of the above materials is as follows; 3.5 V for LiFePO₄, 4.1 V for LiMnPO₄ and 4.8 V for LiCoPO₄ [1–9]. In addition, there is another member of the LiMPO₄ series, LiNiPO₄, which has been postulated to have a higher redox potential (\approx 5.2–5.4 V [1,4,13]) than LiCoPO₄. Previous studies on LiNiPO₄ have shown that no Li can be discharged when it was charged to 5.2 V [1,3].

It is the purpose of this short paper to investigate the effects of: (1) adding LiCoPO₄ and (2) charging to higher potentials (>5.2 V) than previously investigated [1,3], on the discharge behavior of LiNiPO₄. LiCoPO₄ was chosen for the following reasons: (1) it has been recently shown that the electrical conductivity of a LiNi_{0.5}Co_{0.5}PO₄ solid solution was an order of magnitude higher than that for LiNiPO₄ [12] and (2) of the lithium transition metal phosphates; LiFePO₄, LiMnPO₄ and LiCoPO₄ kas the highest redox potential, thus a LiNiPO₄–LiCoPO₄ solid solution will have the highest energy density of the three possible solid solutions (i.e., LiNiPO₄–LiFePO₄) since, the theoretical capacity for LiFePO₄, LiMnPO₄ and LiCoPO₄ and LiCoPO₄ is about the same, ≈ 170 mAh/g [1–9].

2. Experimental

The materials investigated in this study were: (1) LiNiPO₄, (2) LiNi_{0.8}Co_{0.2}PO₄, (3) LiNi_{0.5}Co_{0.5}PO₄, (4) LiNi_{0.2}Co_{0.8}PO₄ and (5) LiCoPO₄. Powders of these materials were obtained using a two-step solid-state reaction method. In the first step stoichiometric amounts of NiO, CoO and LiH₂PO₄ were mixed in a jar mill for two hours and then heated at 375 °C for 20 h in air. The powders were then crushed and ground and pressed into a pellet. The pellet was fired in air at 775 °C for 48 h. After which the powders were crushed and ground and sieved to less than 45 µm. The powders were characterized by X-ray diffraction using Cu Kα radiation.

^{*} Corresponding author. Tel.: +1 301 394 0317; fax: +1 301 394 0273. *E-mail address:* jwolfenstine@arl.army.mil (J. Wolfenstine).

^{0378-7753/\$ –} see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2004.05.017

The electrochemical behavior of the LiNiPO₄-LiCoPO₄ cathode materials was accomplished using coin cells with metallic lithium as the anode. Cells were subjected to cyclic voltammetry and galvanostatic cycling. Cyclic voltammetry was used only as a guide to whether Li insertion/de-insertion occurred. For cyclic voltammetry all cells were scanned at a rate of 0.2 mV/s. The LiCoPO₄ cells were cycled between 3.5 and 5.3 V, for LiNiPO₄ the cells were cycled between 3.5 and 6.0 V and for the LiNiPO₄-LiCoPO₄ solid solutions the cells were cycled between 3.5 and 5.8 V. For the case of galvanostatic cycling the LiCoPO₄ cells were charged to 5.3 V, for LiNiPO₄ the cells were charged to 6.0 V and for the LiNiPO₄-LiCoPO₄ solid solutions the cells were charged to 5.8 V. All cells were discharged to 3.5 V. All charging and discharging was at a constant current density of $50 \,\mu\text{A/cm}^2$. A typical cathode was prepared by mixing 78 wt.% active powders, 12 wt.% carbon and 10 wt.% polyvinylidene fluoride dissolved in N-methylpyrrolidinone. The mixture was coated onto an Al substrate. The cathodes were dried under vacuum at 100 °C for 20 h. The electrolyte solution was 1 M LiPF₆:ethlylene carbonate/dimethyl carbonate (1:1 by volume) for LiCoPO₄. For LiNiPO₄ and the LiNiPO₄-LiCoPO₄ solid solutions the electrolyte was 1 M LiPF₆: tetramethylene sulfone. Tetramethylene sulfone was used because of its high oxidative stability (around 5.8 V versus Li [14]).

3. Results and discussion

X-ray diffraction patterns for the LiNiPO₄, LiNi_{0.5}Co_{0.5} PO₄ and LiCoPO₄ powders after heating at 775 °C are shown in Fig. 1. From Fig. 1 it can be seen that the patterns are similar. The X-ray diffraction patterns for LiNi_{0.8}Co_{0.2}PO₄, and LiNi_{0.2}Co_{0.8}PO₄ were similar to those shown in Fig. 1. The diffraction patterns for all five materials can be indexed to a single-phase material (the amount of second phase ma-

A-LiNiPO 8000 B-LiN_{0.5}Co_{0.5}PO C-LiCoPO **Relative Intensity** 6000 4000 2000 0 15 20 25 30 35 40 45 50 55 Two-theta

Fig. 1. X-ray diffraction patterns for (A) LiNiPO₄, (B) LiNi $_{0.5}$ Co $_{0.5}$ PO₄ and (C) LiCoPO₄.

Fig. 2. Cyclic voltammogram for LiNiPO₄ at a scan rate of $0.2 \, \text{mV/s}$.

terial, NiO/Co₃O₄/Li₃PO₄, was estimated to be less than 5% for all materials) having an ordered olivine structure [12].

Figs. 2-4 show the cyclic voltammograms for LiNiPO₄, LiCoPO₄ and LiNi_{0.5}Co_{0.5}PO₄. From Fig. 2 it can be seen for LiNiPO₄ that there are no significant reduction or oxidation peaks in the range 3.5 to 6.0 V. This is in good agreement with previous results at lower charging potentials [1,3]. The cyclic voltammogram for LiNi_{0.8}Co_{0.2}PO₄ also exhibited no reduction or oxidation peaks in the range 3.5 to 5.8 V. From Fig. 3 it can be seen that in contrast LiCoPO₄ exhibited a significant reduction peak around 4.6 V and an oxidation peak around 5.1 V. This result is in good agreement with previous cyclic voltammetry investigations on LiCoPO₄ [3,5]. The cyclic voltammogram for LiNi_{0.5}Co_{0.5}PO₄ is shown in Fig. 4. From Fig. 4 it can be seen that the cyclic voltammogram for LiNi_{0.5}Co_{0.5}PO₄ is similar to that for LiCoPO₄ (Fig. 3), in that there is a large reduction peak around 4.7 V and an oxidation peak around 5.2 V. The cyclic voltammogram for LiNi_{0.2}Co_{0.8}PO₄ was similar to that exhibited by LiNi_{0.5}Co_{0.5}PO₄ and LiCoPO₄, in that a reduction and oxidation peak was observed around

Fig. 3. Cyclic voltammogram for LiCoPO₄ at a scan rate of 0.2 mV/s.

Fig. 4. Cyclic voltammogram for $\rm LiNi_{0.5}Co_{0.5}PO_4$ at a scan rate of 0.2 mV/s.

4.6 and 5.1 V, respectively. The cyclic voltammetry results suggest that even after charging to as high as 5.8-6.0 V, LiNiPO₄ and LiNi_{0.8}Co_{0.2}PO₄, will exhibit no discharge capacity, whereas LiNi_{0.5}Co_{0.5}PO₄, LiNi_{0.2}Co_{0.8}PO₄ and LiCoPO₄ will have capacity on discharge with a plateau voltage around 4.6-4.7 V.

The first discharge curves after initial charging for LiNiPO₄, LiNi_{0.8}Co_{0.2}PO₄, LiNi_{0.5}Co_{0.5}PO₄, LiNi_{0.2}Co_{0.8} PO₄ and LiCoPO₄ are shown in Fig. 5. From Fig. 5 several important points are noted. Firstly, the discharge capacity for LiNiPO₄ and LiNi_{0.8}Co_{0.2}PO₄ is almost nothing (<5 mAh/g). Secondly, no plateaus above 5.0 V are observed for LiNiPO₄ or any of the LiNiPO₄–LiCoPO₄ solid solutions, where the Ni³⁺/Ni²⁺ redox couple would be expected (\approx 5.2–5.4 V [1,4,13]). Thirdly, a discharge plateau for LiNi_{0.5}Co_{0.5}PO₄, LiNi_{0.2}Co_{0.8}PO₄ and LiCoPO₄ is exhibited and is at the same potential, 4.7–4.8 V. The plateau

Fig. 5. First discharge curves for (A) $LiNiPO_4$, (B) $LiNi_{0.8}Co_{0.2}PO_4$, (C) $LiNi_{0.5}Co_{0.5}PO_4$, (D) $LiNi_{0.2}Co_{0.8}PO_4$ and (E) $LiCoPO_4$.

at 4.7–4.8 V is in good agreement with previous results for the Co³⁺/Co²⁺ redox couple in LiCoPO₄ [3–6]. Thus, it appears that Ni additions do not effect the Co³⁺/Co²⁺ redox potential. Fourthly, the discharge capacity for LiCoPO₄ of 74 mAh/g is in good agreement with previous results for LiCoPO₄ of 70–100 mAh/g [3–6]. Fifthly, the discharge capacity decreases almost linearly as the amount of Co decreases (Ni increases) for the Co-rich solid solutions. For example, the capacity of LiNi_{0.2}Co_{0.8}PO₄ is around 58 mAh/g versus the predicted value of 59 mAh/g (0.8 × 74 = 59) and for LiNi_{0.5}Co_{0.5}PO₄ is about 35 mAh/g versus the predicted value of 37 mAh/g (0.5 × 74 = 37).

The cyclic voltammetry and discharge results reveal that the discharge capacity of the LiNiPO₄-LiCoPO₄ solid solutions is associated entirely with the Co^{3+}/Co^{2+} redox couple at a potential of 4.7–4.8 V. The effect of Ni is to reduce the length of the 4.7-4.8 V plateau and hence, discharge capacity. The addition of LiCoPO₄ to LiNiPO₄ did not allow the Ni^{3+}/Ni^{2+} redox couple to be achieved even after to charging to as high as 5.8–6.0 V. It is possible that the Ni^{3+}/Ni^{2+} plateau was not observed because the conductivity of the LiNiPO₄-LiCoPO₄ solid solutions is still not sufficient. One way to increase the conductivity would be to form LiNiPO₄–LiMnPO₄ or LiNiPO₄–LiFePO₄ solid solutions whose electrical conductivity is at least one to two orders of magnitude higher than for LiNiPO₄-LiCoPO₄ [12]. However, it is anticipated that even these solid solutions still will not have adequate conductivity to observe the Ni^{3+}/Ni^{2+} redox potential. More likely methods to observe the Ni³⁺/Ni²⁺ redox potential involve decreasing the particle size to nano-scale and/or carbon coating and/or lattice doping.

4. Conclusions

LiNiPO₄–LiCoPO₄ solid solutions were investigated as potential cathodes for use in Li-ion batteries. Cyclic voltammetry and discharge curves reveal that the discharge capacity of the LiNiPO₄–LiCoPO₄ solid solutions is associated entirely with the Co³⁺/Co²⁺ redox couple at a potential of 4.7–4.8 V. The effect of Ni is to reduce the length of the 4.7–4.8 plateau. The Ni³⁺/Ni²⁺ redox couple was not observed for LiNiPO₄ or any of the LiNiPO₄–LiCoPO₄ solid solutions even after charging to as high as 5.8–6.0 V.

Acknowledgements

The authors would like to acknowledge support of the US Army Research Laboratory.

References

 K. Phadhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.

- [2] A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu, Y. Nishi, J. Power Sources 119–121 (2003) 232.
- [3] S. Okada, S. Sawa, M. Egashira, J. Yamaki, M. Tabuchi, H. Kageyama, T. Konishi, A. Yoshino, J. Power Sources 97–98 (2001) 430.
- [4] P. Deniard, A.M. Dulac, X. Rocquefelte, V. Grigorova, O. Lebacq, A. Pasturel, S. Jobic, J. Phys. Chem. Solids 65 (2004) 229.
- [5] K. Amine, H. Yasuda, M. Yamachi, Electrochem. Solid State Lett. 3 (2000) 178.
- [6] J.M. Loris, C. Perez-Vicente, J.L. Tirado, Electrochem. Solid State Lett. 5 (2002) A234.
- [7] G. Li, H. Azuma, M. Tohda, Electrochem. Solid State Lett. 5 (2002) A135.

- [8] C. Delacourt, P. Poizot, M. Morcrette, J.-M. Tarascon, C. Masquelier, Chem. Mater. 16 (2004) 93.
- [9] A. Yamada, S.-C. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (2001) A224.
- [10] S.-Y. Chung, J.T. Blocking, Y.-M. Chiang, Nat. Mater. 1 (2002) 123.
- [11] N. Ravet, Y. Chouninard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Sources 97–98 (2001) 503.
- [12] K. Rissouli, K. Benkhouja, J.R. Ramos-Barrado, C. Julien, Mater. Sci. Eng. B 98 (2003) 185.
- [13] G.T. Fey, W. Li, J.R. Dahn, J. Electrochem. Soc. 141 (1994) 2279.
- [14] K. Xu, C.A. Angell, J. Electrochem. Soc. 149 (2002) A920.